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The existing two-dimensional vision measurement methods ignore lens distortion, require the plane to be
perpendicular to the optical axis, and demand a complex operation. To address these issues, a new approach
based on local sub-plane mapping is presented. The plane calibration is performed by dividing the calibration
plane into sub-planes, and there exists an approximate affine invariance between each small sub-plane and the
corresponding image plane. Thus, the coordinate transformation can be performed precisely, without lens dis-
tortion correction. The real comparative experiments show that the proposed approach is robust and yields a
higher accuracy than the traditional methods.
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Vision measurement technology is a new technology based
on machine vision[1–3], which focuses on measuring an
object’s geometric size, shape, space position, attitude,
etc[4–9]. There are a variety of classifications within vision
measurement, including monocular two-dimensional (2D)
vision measurement[6], binocular stereo vision, and multi-
vision measurement[2,4]. Monocular vision measurement
employs a camera for video measurement or photogram-
metry in a 2D plane. Because this method requires only
one vision sensor, it has the advantages of a simple struc-
ture and calibration, and it can also avoid the small view
field of three-dimensional vision and stereo matching.
Research into monocular vision measurement has been
quite active in recent years[10–14].
Plane calibration and coordinate calculation are essen-

tial in 2D vision measurement. The sub-pixel method is
employed to determine the coordinates of specimen mark
points or other geometric features in the calibration plane,
and the coordinates can be calculated in the longitudinal
and transverse directions simultaneously[15]. According to
the changes of the mark point coordinates and the pinhole
model[14], the measured geometric parameters can be cal-
culated, such as the displacement, deformation, speed, etc.
The view range is mainly determined by the focal length of
the lens. By equipping lenses with different focal lengths,
various view ranges can be obtained. The video extensom-
eter is a typical application of 2D vision measurement for
detecting the tensile deformation of materials, as shown
in Fig. 1.
Usually, obvious round marks (although these are some-

times linear marks or random speckles) are made at both
ends of the specimen. The marks project to the CCD;
when the specimen is deformed, the imaging on the
CCD changes accordingly. The real-time image data are
input to the computer. The deformation can be calculated
according to the imaging model through image processing

and the location of the central coordinates. The conven-
tional geometric similarity model is expressed as follows:

w cos θ∕q ¼ h∕p ¼ l∕f ; (1)

where l and f are measurement distance and lens focal
length, θ is the angle between the CCD image plane
and the measurement plane, and h, w and p, q are the
intervals measured and the image size, respectively.

The traditional 2D vision measurement method is based
on the geometric similarity of the measurement plane and
the image plane[10,15]. The specimen surface is vertical to
the optical axis and parallel to the image plane. According
to the pinhole model[14], the object and the image satisfy a
similarity relation, and the actual geometric parameters of
the specimen can be calculated by multiplying the param-
eters extracted from the image by the actual magnifica-
tion. However, because of lens distortion and the difficulty
of ensuring the verticality of the measurement plane and
the optical axis[16,17], the image and object planes are not
strictly consistent with the pinhole model, which leads to
low accuracy. In cases requiring high accuracy, the
distorted image must first be corrected[16,18], and then
the image coordinates are extracted to calculate the actual

Fig. 1. Video extensometer principle based on 2D vision
measurement.
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parameters. But this method can only measure objects in
the plane perpendicular to the optical axis, which is diffi-
cult to achieve in a practical operation, and a time-
consuming calculation is required, which is not suitable
for real-time measurements. The high-precision standard
grid method requires specimens with specific surfaces to
print the chessboard grid[19]. When the specimen generates
tension, mobility, or other changes, the grid is affected.
According to the grid deformation information, the geo-
metric parameters can be calculated[20,21]. However, this
requires a complicated operation, as each measurement
demands that the specimen is printed with standard
grids, and it cannot measure filaments and other small
materials.
We propose a measurement approach based on local

sub-plane mapping to establish a precise projection rela-
tionship between the image coordinates and real-world
coordinates, which has the advantages of high robustness,
the ability to measure a plane without a vertical axis,
almost no restrictions regarding the specimen material,
and no need for a distortion correction. A diagram of this
method is shown in Fig. 2.
As show in Fig. 2(a), a calibration target is needed to

segment the sub-plane size and number accurately[22]; it
is fixed to coincide with the specimen’s surface in measure-
ment plane. Then, the image is captured and processed to
extract the sub-pixel coordinates of every reference point,
as shown in Fig. 2(b). The grid array composed by these
coordinates is saved in the computer for further locating.
Thus, the image plane is divided into a series of sub-
planes, and the mapping model is established between
each image sub-plane and measurement plane, as shown
in Fig. 2(c). The details of this mapping process are shown
in Fig. 3.
Thus, the image grids array can locate the measurement

point according to the surrounding reference points ex-
tracted from the calibration plane. Figure 3 shows that

the point P 0 on the specimen is found to be surrounded
by A0B0C 0D0 from the image grid array and ABCD from
the calibration target. In a small area, there exists an
approximate affine invariance, as presented in

�
SΔAPC∕S□ABCD ¼ ðSΔA0P 0C 0∕S□A0B0C 0D0 Þ∕ cos θ
SΔAPB∕S□ABCD ¼ SΔA0P 0B0∕S□A0B0C 0D0

; ð2Þ

where SΔ and S□ represent the areas of the triangle and
the square, respectively, calculated by Heron’s formula.
We obtain the standard distance from each axis:

�
dx ¼ ð2dSΔA0P 0C 0∕S□A0B0C 0D0 Þ∕ cos θ
dy ¼ 2dSΔA0P 0B0∕S□A0B0C 0D0

: ð3Þ

As long as the interval d is known, the position of the
tested point Pðx; yÞ can be determined. The normalized
coordinates in the standard grid coordinates system are
expressed in

Pððm þ dxÞd∕ cos θ; ðn þ dyÞdÞ: (4)

Assuming that the image coordinates of A0B0C 0D0 and
P 0 are ðxA0 ; yA0 Þ, ðxB0 ; yB0 Þ, ðxC 0 ; yC 0 Þ, ðxD0 ; yD0 Þ, and ðx 0; y0Þ,
respectively, the transformation relationship between the
image coordinates and practical geometric coordinates
Pðx; yÞ is calculated using the following expression:

8>><
>>:
x ≈ d

�
m þ 2 × j detAA0P 0C 0 j

j detAA0B0C 0 j þ j detAD0B0C 0 j
�
∕ cos θ

y ≈ d
�
n þ 2 × j detAA0P 0B0 j

j detAA0B0C 0 j þ j detAD0B0C 0 j
� ; ð5Þ

where m and n are the numbers of intervals on the chess-
board from the origin, d is the calibration target gauge
length, θ is the angle between the measurement plane
and the image plane, as shown in Fig. 1, and jdetAj rep-
resents the absolute value of the area matrix A determi-
nant jAj. This method avoids complex modeling. The
impact of lens distortion can be suppressed. Its measure-
ment accuracy and range largely depends on the calibra-
tion target accuracy and sub-planes area, respectively[23,24].

As shown in Fig. 4, because of lens distortion, the mea-
surement plane and image plane are not strictly consistent
with the pinhole model[16–18]. In order to demonstrate that
the lens distortion effect is suppressed without loss of gen-
erality, we establish the image coordinate system with the

Fig. 2. Process diagram of sub-planes: (a) calibration target with
6 × 22 point fixed to coincide with the specimen surface, (b) ex-
tract and save sub-pixel coordinates of every reference point from
the target image, and (c) establish the mapping model between
each image sub-plane and measurement plane.

Fig. 3. Schematic of coordinate location method in sub-plane.
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origin as the center point of distortion. The undistorted
coordinates of the four sub-plane vertexes surrounding
point Pðx; yÞ areAðxA; yAÞ, BðxA þ L; yAÞ, CðxA; yA þ LÞ,
and DðxA þ L; yA þ LÞ for a measurement angle of θ ¼ 0
and a sub-plane side length L. The distortion point
A0ðxA0 ; yA0 Þ and the corresponding point AðxA; yAÞ are
related as follows:

�
xA0 ¼ xARA þ ½2p1xAyA þ p2ðr2A þ 2x2AÞ�
yA0 ¼ yARA þ ½2p2xAyA þ p1ðr2A þ 2y2AÞ�

; ð6Þ

where RA ¼ 1þk1r2Aþk2r4Aþk3r6A, and rA ¼ ½x2Aþy2A�1∕2,
k1, k2, and k3 are the coefficients of the radial distortion,
and p1 and p2 are the coefficients of the tangential distor-
tion[25]. The other points also satisfy this distortion rela-
tionship. Thus, the areas of SΔ and S□ shown in Fig. 4
can be calculated using the coordinates of ABCD,
A0B0C 0D0, P, and P 0. The real transverse and longitudinal
deviation of Pðx; yÞ and P 0ðx 0; y0Þ are then given by the
following expressions:

8<
:
Δx ¼ x 0 − x ¼

�
2 SΔA0P0C 0
S□A0B0C 0D0 −

x−xA
xB−xA

�
d

Δy ¼ y0 − y ¼
�
2 SΔA0P0B0
S□A0B0C 0D0 −

y−yA
yC−yA

�
d
: ð7Þ

It is reasonable to adopt this analysis to assess the per-
formance of the measurement method rather than that of
the feature-extraction algorithm, which is used to localize
the distorted image points. We know the distortion coef-
ficient of the lens and know that the measurement view
range is 400 mm × 400 mm, which is larger than that
for the real measurement. The computer-simulated
deviation data between the undistorted and measured co-
ordinates are presented in Fig. 5.

Figure 5(a) displays the deviation distribution over the
entire view range when the sub-plane interval was fixed as
6 mm (equal to the calibration target gauge length in the
real experiment). We see that the maximum deviation
obtained by the local sub-plane mapping of the 2D vision
measurement was 2.4 μm when the view range was
400 mm × 400 mm. Figure 5(b) shows the relationship
between the maximum deviation value and the sub-plane
interval in the same view range. Thus, when designing cal-
ibration target, an appropriate gauge length can be chosen
according to the accuracy requirements.

In the measurement process, the three fundamental
planes are the calibration plane, the measurement plane,
and the image plane. The specimen is loaded almost
coincident with the calibration plane, in accordance with
the mechanical constraints to reduce the out-plane effects.
But since the out-plane effects still exist, it is necessary to
analyze the out-plane deviation, as shown in Fig. 6.

According to the pinhole model, the relationship
between the measurement plane and the image plane
can be expressed by the following equation:

d∕f ¼ h∕l; (8)

where d and f are the measurement distance and the lens
focal length, respectively. h is the distance measured, and l
is the size of the imaging distance. Thus, the deviation
Δh caused by the out-plane displacement Δd can be
expressed as

Δh ¼ h0 − h ¼ ðl 0 × ΔdÞ∕f ; (9)

where h0 and l 0 are the actual measurement distance and
image size, respectively. The relative measurement accu-
racy can be expressed by the following equation:

δ ¼ Δh∕h0 ¼ Δd∕ðd − ΔdÞ: (10)

In actual applications, the relative accuracy of 2D vision
measurement usually is no more than 5%, which can be
satisfied by designing the appropriate measurement dis-
tance and the precision of the mechanical constraints
and compensating for the specimen’s thickness.

The proposed method was tested in real experiments
and compared with conventional 2D vision measurement
methods, including the geometric similarity method and
digital image correlation (DIC). As a classic microscopic
measurement method for in-plane displacement and

Fig. 4. Effects of the lens distortion: (a) real chessboard image
and image with lens distortion and (b) pixel deviations before
and after image distortion.

Fig. 5. Relationship between sub-planes interval and mapping
accuracy, obtained using lens with first distortion coefficient
k1 ¼ 4.1 × 10−8: (a) fixed interval deviation distribution in
whole view range 400 mm × 400 mm and (b) relationship be-
tween maximum deviation and sub-planes interval. Fig. 6. Principle of the out-plane effects.
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deformation, the DIC has an important application in 2D
vision measurement[26]. Though the local sub-plane map-
ping method has a large measurement range and the
DIC method is too time-consuming to suit that, the com-
parison between the two methods was performed over an
approximately 1 mm range. In the experiments, the cali-
bration target was a chessboard pattern with 6 × 22
circular points distributed evenly, where the distance
between the adjacent points was 6 mm. The lens was a
PenTax H1214-M made in Japan, with a horizontal view
angle of 28.91° and a 12 mm focal length, and a PointGrey
Flea3 camera made in Canada with 1/2.8” CCD was used.
The image resolution was 1920 pixels × 2416 pixels, whose
1/3 part of 640 pixels × 2416 pixels was used for the ex-
periments. The measurement distance was 45 cm and the
accuracy of sub-pixel location usually could achieve 0.02
pixels[27]. Thus, the accuracy of the sub-pixel location
was 1.25 μm. The circular mark was approximately

6 mm in diameter, and the size of the DIC subset was
81 pixels × 81 pixels. The images for calibration and mea-
surement were captured from a random orientation, and
the position of the CCD camera was fixed throughout.

First, the plane calibration was performed using two im-
ages of the calibration target. One image of the calibration
target was captured and stored. The coordinates array of
the reference grids could be extracted through image
processing methods such as image filtering, edge detec-
tion, and feature extraction. Then, another image was
captured and processed according the former process,
whose grid coordinates could be normalized according
to the reference grid array by Eq. (4). Thus, the intervals
of the adjacent points of the second image were calculated,
and the calibration accuracy was expressed by the aver-
age, minimum, and maximum errors between the actual
intervals and the gauge length of the calibration target.
In the measurement process, a series of images of the speci-
men with circular marks were captured and processed in
real time. If the marks were in the calibrated area, the real-
time normalized coordinates of the specimen marks could
be calculated and the position of each mark was located.
The entire measurement process is shown in Fig. 7.

To practically determine the measurement accuracy, we
performed two comparison tests. The first was round-
mark point-displacement test. It used a high-precision
stretching machine to load the displacement, and the mea-
surement data was compared with the results measured by
the DIC method and the displacement data from the
stretching machine. The second was a gauge length
measurement experiment, where the interval between two
adjacent round mark points was known, and the measure-
ment data of the distance was compared with the standard
length data.

The calibration results obtained using different meth-
ods are compared in Fig. 8 and Table 1. The measurement
results are compared in Tables 2 and 3. Clearly, the
calibration methods greatly influence the measurement
accuracy, and the local sub-plane mapping method
has better accuracy and stability. Tables 2 and 3 present
comparative results for the real-time measurement of the
random displacement and gauge length. The real data for
the random displacement were captured by the stretching
machine, and that for the gauge length were obtained
using the calibration target. Two kinds of contrast indi-
cate that the accuracy of this mapping method is better
than an absolute accuracy of 3 μm in a small measurement

Fig. 7. Process of measurement experiment: (a) calibration
target fixed on stretching machine, (b) image for calibration,
(c) matrix of circular center, (d) displacement measurement
using two methods, (e) 81 pixels × 81 pixels correlation subset,
and (f) gauge length measurement.

Fig. 8. Comparative results for calibration accuracy using the
two methods.

Table 1. Comparison of Calibration Accuracy

Calibration Accuracy Number Maximum (μm) Minimum (μm) Average (μm) Maximum (%) Minimum (%)

Local Sub-Plane X 136 1.94 0.00 1.00 0.32 0.00

Mapping Method Y 136 2.16 0.00 1.00 0.36 0.00

Geometric Similarity X 136 28.08 0.12 12.22 4.68 0.02

Method Y 136 27.62 0.15 13.07 4.60 0.03
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range, and a relative accuracy of 1% in a large measure-
ment range, which is better than that of the conventional
geometric similarity method and is comparable to the DIC
method.
In conclusion, we propose a precise measurement ap-

proach for 2D vision measurement. Until now, the conven-
tional geometric similarity methods based on whole-plane
mapping have led to decreased accuracy because of lens dis-
tortion. Moreover, the condition that the measured object
surface is vertical to the optical axis of the camera system
and parallel to the image plane is unrealistic. To overcome
these shortcomings, the local sub-planemappingmethod is
presented for the first time, with the aim of establishing a
precise transformation between the image point and the
real-world point in a 2D plane. Additionally, the local
sub-plane mapping model and simple algorithm for coordi-
nate location are combined to improve the measurement
accuracy and efficiency. To validate the performance of
the proposed method, we performed experiments using
synthetic and real data and compared the resultswith those
for the conventional method. The results from the com-
puter simulation and real data demonstrate the advantage
of the proposed approach.

This work was supported by the National Natural
Science Foundation of China under Grant No. 61372177.
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Table 2. Comparison of Displacement Measurement Accuracy

Displacement Measurement/μm Data Comparison

Proposed Method 103 217 354 496 615 749 905 1103

DIC Method 102 217 359 501 616 750 909 1104

Real Data 103.7 218.2 356.1 497.8 614.3 747.7 907.1 1101.5

Table 3. Comparison of Gauge Length Measurement Accuracy

Gauge Length Measurement/μm Data Comparison

Proposed Method 5998 11995 18008 24014 35991 59,984 84,017

Real Data 6000 12000 18000 24000 36000 60,000 84,000
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